Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro
نویسندگان
چکیده
In tobacco chloroplast transcripts 34 nt are efficiently edited to U. No common consensus region is present around all editing sites; however, sites can be grouped in clusters that share short common sequences. Transgene transcripts carrying either the wild-type -31/+22 or -31/+60 sequence near NTrpoB C473, an editing site within tobacco rpoB transcripts, or three different mutated sequences, were all highly edited in vivo. Endogenous transcripts of rpoB, psbL and rps14, all of which contain common sequences S1, S2 and S3 5' to NTrpoB C473, NTpsbL C2 and NTrps14 C80, were less edited in transgenic plants that over-express transcripts from NTrpoB C473 transgenes. Extent of reduction of endogenous editing differed between transgenic lines expressing mutated -31/+22 regions, depending on the abundance of the transgene transcripts. The -20/-5 sequence contains critical 5' sequence elements. Synthetic RNA templates with alterations within this 5' region were less efficiently edited in vitro than wild-type templates, by either tobacco or maize chloroplast extracts. The tobacco chloroplast extract supports both RNA editing and processing of 3' transcript termini. We conclude that within the -20/-5 region, sequences common to editing sites in the transcripts of rpoB, psbL and rps14 are critical for efficient NTrpoB C473 editing.
منابع مشابه
A single alteration 20 nt 5' to an editing target inhibits chloroplast RNA editing in vivo.
Transcripts of typical dicot plant plastid genes undergo C-->U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence -20 to +6 surrounding the C target of e...
متن کاملRecognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts.
RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobac...
متن کاملTwo RNA editing sites with cis-acting elements of moderate sequence identity are recognized by an identical site-recognition protein in tobacco chloroplasts
The chloroplast genome of higher plants contains 20-40 C-to-U RNA editing sites, whose number and locations are diversified among plant species. Biochemical analyses using in vitro RNA editing systems with chloroplast extracts have suggested that there is one-to-one recognition between proteinous site recognition factors and their respective RNA editing sites, but their rigidness and generality...
متن کاملThree distinct RNA sequence elements are required for efficient apolipoprotein B (apoB) RNA editing in vitro.
Apolipoprotein B (apoB) mRNA is edited in rat liver and intestine to convert a CAA glutamine codon to a UAA translational stop codon by the direct conversion of cytidine to uridine at nucleotide 6666. We have proposed the 'mooring sequence' model for apoB RNA editing, in which editing complexes (editosomes) assemble on specific apoB mRNA flanking sequences to direct this site-specific editing e...
متن کاملTargeted Inactivation of a Tobacco Intron–containing Open Reading Frame Reveals a Novel Chloroplast-encoded Photosystem I–related Gene
The chloroplast genome of all higher plants encodes, in its large single-copy region, a conserved open reading frame of unknown function (ycf3), which is split by two group II introns and undergoes RNA editing in monocotyledonous plants. To elucidate the function of ycf3 we have deleted the reading frame from the tobacco plastid genome by biolistic transformation. We show here that homoplasmic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006